
Module 2 - Session 4 - Data exploration
Working effectively with data

CivicDataLab

2021/09/01 (updated: 2021-09-02)

https://civicdatalab.in/

JOINing Tables

A JOIN command is used where we need to query data that is spread across multiple tables

Merging two data sets using SQL or SQL tools can be accomplished through JOINS. A JOIN is a SQL
instruction in the FROM clause of your query that is used to identify the tables you are querying and
how they should be combined.1

[1] Dataschool

2 / 18

https://dataschool.com/how-to-teach-people-sql/sql-join-types-explained-visually/
https://civicdatalab.in/

3 / 18

https://civicdatalab.in/

JOINS - Exercise 1
Create a table that only contains cases registered with the Karnataka district courts
Join the above table with cases_district_key to get district name
Find the total number of cases in each district. Arrange the results in descending order
Use a subquery to combine the two queries in one

4 / 18

https://civicdatalab.in/

JOINS - Exercise 1
Create a table that only contains cases registered with the Karnataka district courts
Join the above table with cases_district_key to get district name
Find the total number of cases in each district. Arrange the results in descending order
Use a subquery to combine the two queries in one

SELECT a2.district_name, count(*) AS total_cases
FROM (SELECT
 a.*, b.district_name
FROM
 cases_2018_karnataka AS a
LEFT JOIN
 cases_district_key AS b
ON a.state_code = b.state_code AND a.dist_code = b.dist_code) AS a2
GROUP BY a2.district_name
ORDER BY total_cases DESC

4 / 18

https://civicdatalab.in/

Other SQL Concepts

5 / 18

https://civicdatalab.in/

CASE WHEN

CASE WHEN takes in values, checks them against a condition and THEN outputs values into a new column based
on if it satisfies the condition.

CASE WHEN in SQL operates very similarly to “if then” statements in other programming languages.

6 / 18

https://civicdatalab.in/

Example

Create a new column as defendant_type as per the
values given in the female_defendant column. Use

these rules:

Tag female defendants as female
Tag male defendants as male

Tag all other defendants as not_sure

CASE WHEN

CASE WHEN takes in values, checks them against a condition and THEN outputs values into a new column based
on if it satisfies the condition.

CASE WHEN in SQL operates very similarly to “if then” statements in other programming languages.

6 / 18

https://civicdatalab.in/

Example

Create a new column as defendant_type as per the
values given in the female_defendant column. Use

these rules:

Tag female defendants as female
Tag male defendants as male

Tag all other defendants as not_sure

Query

SELECT female_defendant,
CASE
 WHEN female_defendant = '1 female' THEN 'female
 WHEN female_defendant = '0 male' THEN 'male'
 ELSE 'not_sure'
END AS defendant_type
FROM cases_2018_karnataka
LIMIT 20

CASE WHEN

CASE WHEN takes in values, checks them against a condition and THEN outputs values into a new column based
on if it satisfies the condition.

CASE WHEN in SQL operates very similarly to “if then” statements in other programming languages.

6 / 18

https://civicdatalab.in/

Example 1

Using the mortality dataset, categorise total number
of deaths in a given month/year as less than 5K ,
between 5K and 10K and greater than 10K

select month, year, deaths,
 CASE
 WHEN deaths < 5000 THEN "lt 5K"
 WHEN 5000<=deaths<10000 THEN "5K-10K"
 WHEN deaths > 10000 THEN "gt10K"
 END as "trends"
FROM mortality_data;

Example 2

On Mortality data, assign names for months where
month <=4 in the year 2019

select month, year, deaths,
CASE
 WHEN month = 1 THEN "Jan"
 WHEN month = 2 THEN "Feb"
 WHEN month = 3 THEN "Mar"
 WHEN month = 4 THEN "Apr"
END as "monthName"
FROM mortality_data
WHERE
 month <= 4 AND
 year= 2019 AND
 state="Rajasthan";

CASE WHEN - Examples

7 / 18

https://github.com/CivicDataLab/Working-with-Data-Workshops/blob/master/modules/module_2_data_exploration/data/mortality_data.csv
https://civicdatalab.in/

Subqueries
The core concept to grasp is that the subquery is a separate SQL query that produces a table that is then used in

the main query.

8 / 18

https://civicdatalab.in/

Objective

Find the total number of cases in BENGALURU
where petitioner is a female aggregated by judge
position (Without Using JOINS)

Subqueries
The core concept to grasp is that the subquery is a separate SQL query that produces a table that is then used in

the main query.

8 / 18

https://civicdatalab.in/

Objective

Find the total number of cases in BENGALURU
where petitioner is a female aggregated by judge
position (Without Using JOINS)

Query

SELECT judge_position, count(*) AS total_cases
FROM cases_2018_karnataka
WHERE dist_code = (
 SELECT dist_code
 FROM cases_district_key
 WHERE district_name = 'BENGALURU'
) AND
 female_petitioner = '1 female'
GROUP BY judge_position
ORDER BY total_cases DESC

Subqueries
The core concept to grasp is that the subquery is a separate SQL query that produces a table that is then used in

the main query.

8 / 18

https://civicdatalab.in/

Subqueries - Examples
Subquery in the FROM clause

SELECT * FROM (SELECT State, SUM (# of friends) FROM facebook GROUP BY state);

9 / 18

https://civicdatalab.in/

Subqueries - Examples
Subquery in the FROM clause

SELECT * FROM (SELECT State, SUM (# of friends) FROM facebook GROUP BY state);

Subquery in the WHERE clause (Returns single value)

SELECT * FROM facebook WHERE # of friends = (SELECT MAX(# of connections) FROM linkedin)

9 / 18

https://civicdatalab.in/

Subqueries - Examples
Subquery in the FROM clause

SELECT * FROM (SELECT State, SUM (# of friends) FROM facebook GROUP BY state);

Subquery in the WHERE clause (Returns single value)

SELECT * FROM facebook WHERE # of friends = (SELECT MAX(# of connections) FROM linkedin)

Subquery in the WHERE clause (Returns multiple values)

SELECT * FROM facebook WHERE # of friends IN (SELECT # of connections FROM linkedin)

9 / 18

https://civicdatalab.in/

EXERCISE - CASE WHEN & Subqueries
Load Mortality data in the database
Create a column to tag months where the total number of deaths was above or below average for the state of
Rajasthan.
The column can have only two values Above average and Below average
Sort the result dataset by year

10 / 18

https://github.com/CivicDataLab/Working-with-Data-Workshops/blob/master/modules/module_2_data_exploration/data/mortality_data.csv
https://civicdatalab.in/

EXERCISE - CASE WHEN & Subqueries
Load Mortality data in the database
Create a column to tag months where the total number of deaths was above or below average for the state of
Rajasthan.
The column can have only two values Above average and Below average
Sort the result dataset by year

select month, year, deaths,
CASE WHEN
 deaths < (select avg(deaths) as avg_deaths_RJ from mortality_data where state='Rajasthan')
 THEN "belowAvg"
 ELSE "aboveAvg"
 END as "trends"
FROM mortality_data where state='Rajasthan' order by year desc;

10 / 18

https://github.com/CivicDataLab/Working-with-Data-Workshops/blob/master/modules/module_2_data_exploration/data/mortality_data.csv
https://civicdatalab.in/

Window Functions

Window functions create a new column based on calculations performed on a subset or window of the data. This
window starts at the first row on a particular column and increases in size unless you constrain the size of the

window.

11 / 18

https://civicdatalab.in/

SELECT 'Day', 'Mile Driving',SUM('Miles Driving')
OVER(ORDER BY 'Day') AS 'Running Total'
FROM 'Running total mileage visual'

Window Functions

Window functions create a new column based on calculations performed on a subset or window of the data. This
window starts at the first row on a particular column and increases in size unless you constrain the size of the

window.

11 / 18

https://civicdatalab.in/

SELECT 'Day', 'Mile Driving',SUM('Miles Driving')
OVER(ORDER BY 'Day') AS 'Running Total'
FROM 'Running total mileage visual'

Window Functions

Window functions create a new column based on calculations performed on a subset or window of the data. This
window starts at the first row on a particular column and increases in size unless you constrain the size of the

window.

11 / 18

https://civicdatalab.in/

Window Functions - Use Cases
Creating additional columns

Using Mortality data, find if the total deaths in a state in a given month and year was above or below the average
number of deaths in that year for a state

SELECT *,
 CASE
 WHEN deaths < avg_deaths THEN 'Below Average'
 ELSE 'Above Average'
 END AS trends
FROM (
 SELECT *, AVG(deaths) OVER(PARTITION BY state,year) as avg_deaths
 FROM mortality_data
)

12 / 18

https://github.com/CivicDataLab/Working-with-Data-Workshops/blob/master/modules/module_2_data_exploration/data/mortality_data.csv
https://civicdatalab.in/

Window Functions - Use Cases
Ranking Items

Assign ranks as per the total cases registered under each judge position across all districts

SELECT *,
 RANK() over(ORDER BY total_cases DESC) AS ranking
FROM
 (
 SELECT dist_code, judge_position, count(*) AS total_cases
 FROM cases_2018_karnataka
 GROUP BY dist_code,judge_position
)

13 / 18

https://civicdatalab.in/

PARTITION BY AND ORDER BY
Ranking with PARTITION BY

Ranking within each district

SELECT *,
 RANK() over(PARTITION BY dist_code ORDER BY total_cases DESC) AS ranking
FROM
 (
 SELECT dist_code, judge_position, count(*) AS total_cases
 FROM cases_2018_karnataka
 GROUP BY dist_code,judge_position
)

14 / 18

https://civicdatalab.in/

Regular Expressions (REGEX)

Regex, or Regular Expressions, is a sequence of characters, used to search and locate specific sequences of
characters that match a pattern.

15 / 18

https://civicdatalab.in/

Find all states that start with letter A

SELECT distinct state
FROM mortality_data
WHERE state LIKE 'A%';

Find all states that end with word Pradesh

SELECT distinct state
FROM mortality_data
WHERE state LIKE '%Pradesh';

Regular Expressions (REGEX)

Regex, or Regular Expressions, is a sequence of characters, used to search and locate specific sequences of
characters that match a pattern.

The LIKE clause

15 / 18

https://civicdatalab.in/

REGEX Exercise
1. Import NCRB data
2. Find all crime heads related to children [can contain child or children]
3. Find all crime heads that mention Murder
4. Find all crime heads that start with Murder
5. Find all crime heads that are either SLL or IPC [REGEXP / UNION]

16 / 18

https://github.com/CivicDataLab/Working-with-Data-Workshops/blob/master/modules/module_2_data_exploration/data/ncrb.csv
https://civicdatalab.in/

JOINS - Exercise 2
Find the top 5 districts of Karnataka in terms of the number of cases that ended in conviction

17 / 18

https://civicdatalab.in/

JOINS - Exercise 2
Find the top 5 districts of Karnataka in terms of the number of cases that ended in conviction

SELECT d.*, e.district_name FROM (
SELECT c.dist_code, count(*) as total_convict_cases
FROM (
SELECT a.dist_code, a.disp_name, b.disp_name_s FROM
 cases_2018_karnataka AS a
LEFT JOIN
 disp_name_key AS b
ON
 a.disp_name = b.disp_name) AS c
WHERE c.disp_name_s
LIKE '%convict%'
GROUP BY c.dist_code) as d
LEFT JOIN
 cases_district_key as e
ON
 d.dist_code = e.dist_code
WHERE
 e.state_code = 3
ORDER BY
 total_convict_cases DESC LIMIT 5

17 / 18

https://civicdatalab.in/

Queries and Feedback

18 / 18

https://civicdatalab.in/

